Publications:Best Regions for Periocular Recognition with NIR and Visible Images


Do not edit this section

Keep all hand-made modifications below

Title Best Regions for Periocular Recognition with NIR and Visible Images
Author Fernando Alonso-Fernandez and Josef Bigun
Year 2014
PublicationType Conference Paper
HostPublication 2014 IEEE International Conference on Image Processing (ICIP)
Conference IEEE International Conference on Image Processing, ICIP, Paris, France, 27-30 October, 2014
Diva url
Abstract We evaluate the most useful regions for periocular recognition. For this purpose, we employ our periocular algorithm based on retinotopic sampling grids and Gabor analysis of the spectrum. We use both NIR and visible iris images. The best regions are selected via Sequential Forward Floating Selection (SFFS). The iris neighborhood (including sclera and eyelashes) is found as the best region with NIR data, while the surrounding skin texture (which is over-illuminated in NIR images) is the most discriminative region in visible range. To the best of our knowledge, only one work in the literature has evaluated the influence of different regions in the performance of periocular recognition algorithms. Our results are in the same line, despite the use of completely different matchers. We also evaluate an iris texture matcher, providing fusion results with our periocular system as well.